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1 Introduction

In this paper we derive a simple model that describes the recovery of petroleum fluids from an oil reservoir by
the method of electromagnetic heating. By its very nature this problem must deal with both the equations
that describe the fluid flow as well as the heat flow. In fact, one approach to this problem is to write out
the full system of coupled partial differential equations that relate the temperature and the velocity flux and
then to solve them numerically with a computational fluid dynamics (CFD) program. This method has been
used in the past [5] and the results from a commercial CFD solver will be used to test the accuracy of our
simplified model in the absence of experimental data.

In general, the oil in the wellbore is very viscous with the consequence that the fluid moves slowly. As
a result, the amount of oil collected in a given time is quite small. To increase the production rate of the
well, the oil’s velocity needs to be increased and one method of accomplishing this is by heating the fluid
using an electromagnetic induction tool (EMIT). The simple principle behind the EMIT is that it heats the
fluid thereby decreasing its viscosity and increasing its velocity. This method of increasing the production
rate of a given wellbore is currently being utilized with the generalization that for wells of several hundred
meters in length, several EMIT regions are placed in the wellbore at intervals of about one hundred meters.
So that they are all supplied sufficient power, these EMIT regions are connected by a cable surrounded by
a steel housing.

The purpose of this paper is to carefully analyze each of the physical processes in this system and by
making some basic assumptions, to derive a simple set of equations that can be solved rapidly while still
capturing the main features of the system modelled with the CFD code. In this process we find that under
our assumptions, the flux of oil from the wellbore can be modelled with a single nonlinear second order
boundary value problem.

As a comparison of the two models, the production rate at the pump was computed for the two models
in the unheated case. The difference between the two models was found to be less than 5%. This is quite
remarkable considering the relative complexity of the two models. When the wellbore is heated the deviation
between the CFD package and our solution increases but it does so in a manner consistent with the formation
of a thermal boundary layer at the wellbore casing. Since the commercial code is time dependent, and does
not model the wellbore as an idealized pipe the comparison in this heated case required many hours of
computation. As such only one iteration of the CFD solution was pursued.

One of the advantages of the simplified model is that it allows one to search wide ranges of parameter
space. With a large commercial package this procedure can be prohibitively expensive. We consider two
problems along these lines. First, we determine the production rate at the pump as a function of position
in the wellbore and the amount of power applied. Second, the rule of thumb of placing the EMIT regions at
100 m intervals in a long well is analyzed.

This paper is organized in the following way. Section 2 describes the overall geometry of the problem
and establishes the coordinates used to describe the model. At this point the problem is broken into three
subproblems: i) the radial flow of fluid in the reservoir, ii) the horizontal flow of fluid in the wellbore and iii)
the generation of temperature from the heat sources in any EMIT regions and how this couples to part i)
and ii). Parts i) and ii) result in a second order ODE for the radially average oil flux determined at a fixed
viscosity. From part iii) it is found that the temperature of the fluid is inversely proportional to the velocity.
Consequently, fluid that moves slowly past an EMIT region will absorb more heat than the same amount of
fluid that moves quickly past an EMIT. As a result, slowing the fluid velocity increases the temperature and
therefore decreases the viscosity. This viscosity is used in parts i) and ii) to close the system of equations.
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Figure 1: Cross section of the overall geometry for the horizontal wellbore problem. The rate and direction
of the oil flow is indicated with the arrows. At z = 0 there is an end cap and the horizontal flow is zero while
at z = L there is a pump that maintains the producing pressure PP .

Part i) is described in Section 3, where a relationship between the axial changes in the fluid flux and the
pressure in the wellbore is derived. The details of part ii) can be found in Section 4 where a relationship for
the velocity and the pressure from the Navier-Stokes equations is obtained by averaging over the radius of
the wellbore. Under the assumptions made, the pressure is found to be related to the radius of the wellbore
by a form of Poiseuille’s law. Section 5 illustrates the analytical solution of the resulting model in the simple
situation when no heat is applied to the oil.

Section 6 details the derivation of part iii), the temperature equations. This derivation is complicated
by the fact that there are four radial regions of the radial problem to consider; EMIT, casing, reservoir and
wellbore with the first three forming the boundary conditions for the heat equation in the wellbore region.
Furthermore, there are three axial regions: EMIT region, cable region, and a region where there is neither
EMIT nor cable. Section 7 summarizes resulting nonlinear ODE obtained by pulling the results of Sections 3,
4 and 6 together.

In Section 8, we discuss the numerical results of the simplified model and how they compare to the results
predicted by the CFD code. On comparison, we find considerable qualitative agreement between the two
models. These aspects are further discussed in the final section of the paper.

2 Geometry

Figure 1 depicts the overall geometry of the problem. A horizontal cylindrical well extends from z = 0 to
z = L. Fluid flows radially into the well from the surrounding media and is drawn out with a pump which
is located at z = L where a fixed producing pressure of PP is maintained.

At z = 0, where the end cap is situated, the motion of the flow is radially inward through the reservoir
and the casing that lines the complete length of the wellbore (no horizontal flow at this point). As one
increases in z, the action of the pump comes into effect and imparts a horizontal component to the fluid
flow.

This figure shows only one EMIT region located at z = ze of length 2Le but the analysis can be easily
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Data Symbol Value
Wellbore Properties

Outer Casing Radius Rc 69.85 mm
Inner Casing Radius Rw 63.50 mm
EMIT Radius Re 50.80 mm
Housing Radius Rh 30.1625 mm
Centre of the EMIT ze 500 m
EMIT Length 2Le 10 m
Wellbore Length L 1,000 m

Reservoir Properties
Permeability1 k 10,000 mD
Ambient Viscosity2 µo 15,000 cP
Drainage Radius Rd 100 m
Reservoir Pressure3 PR 5,000 kPa
Producing Pressure PP 500 kPa

Thermal Properties
Fluid Heat Capacity ρCf 2.8 × 106 J m−3K−1

Casing Power Qc 795.8 kW m−3

EMIT Power Qe 79.58 kW m−3

Ambient Temperature Ta 30◦C

Table 1: Input data for the example calculations.

generalized to the case of N EMIT regions. It is in these EMIT regions that the oil is heated. The casing
in these regions acts as a single turn secondary winding of a transformer thereby heating the surrounding
fluids. Power is supplied to the EMITs through a cable housing resulting in three different regions. Starting
at the end cap the wellbore is open with no impediment to the horizontal flow. This extends to the first
EMIT. If there are other EMIT regions then they must also be joined with cable housing and eventually,
after the last EMIT region, we have a cable housing region that extends to the pump.

There are a number of physical constants associated with the fluid and heat flow within the wellbore.
Since these are required to generate numerical solutions and to justify some of the assumptions, they have
been collected in Table 1.

3 Axial Velocity: Darcy’s Law

Once the horizontal well is drilled, fluid seeps from the surrounding region into the wellbore. Having reached
the wellbore, the fluid is drawn out with a pump that maintains a fixed pressure at one end of the well. The
rate at which the fluid seeps into the wellbore is a function of the pressure differential and the viscosity of
the fluid. Indeed, the flow rate (volume/time) of the fluid into a segment of the wellbore of length ∆z is
given by the expression [3]

q(z) =
2πk[PR − P (z)]
µo ln(Rd/Rc)

∆z (1)

where k is the permeability of the reservoir, PR is the reservoir pressure and P (z) is the pressure inside the
wellbore at the axial position z. As well, µo is the viscosity at the ambient temperature Ta and Rd/Rc is
the ratio of the drainage radius to the outer radius of the casing.

Since we are assuming that we are at a steady state, we make the assumption that the radially flowing
fluid remains unheated until it reaches the outer radius of the casing at which point it instantly becomes

11 darcy = 9.86923 × 10−13 m2.
21 centipoise = 1 × 10−3 kg m−1s−1.
31 pascal = 1 kg m−1s−2.
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Figure 2: An infinitesimal section of the wellbore for the EMIT or cable housing regions.

heated to the average temperature of the fluid at that particular z position. Consequently the viscosity in
expression (1) will remain as µo even once the temperature of the wellbore is increased.

Using equation (1) one can find an expression for the average axial velocity of the fluid, v̄(z). Let Rz

denote the inner radius of the wellbore which depends on the axial region under consideration. For one EMIT
region with Re the radius of the EMIT and letting Rh denote the outer radius of the electrical housing

Rz =




0; 0 ≤ z < ze − Le

Re; ze − Le ≤ z ≤ ze + Le

Rh; ze + Le < z ≤ L
(2)

so that η(z) = π(R2
w − R2

z)v̄(z) is the flux in the wellbore. The advantage of using η(z) rather than v̄(z) is
that η(z) is a continuous function whereas the velocity v̄(z) is not.

Figure 2 shows an infinitesimal annular section of the wellbore of length ∆z. At z = z∗ the axial flux is
η(z∗) while the radial flux is given by expression (1). By the conservation of mass, these two components
combine to give the axial flux at z = z∗ + ∆z. In other words,

η(z∗) +
2πk[PR − P (z∗)]

µo ln(Rd/Rc)
∆z = η(z∗ + ∆z).

Rearranging terms and letting ∆z → 0 gives the expression

dη

dz
=

2πk[PR − P (z)]
µo ln(Rd/Rc)

; η(0) = 0. (3)

The boundary condition η(0) = 0 just expresses our approximation that the axial fluid velocity is zero at
the end cap of the wellbore. Since P (z) < PR throughout the wellbore, dη/dz > 0 which is consistent with
having the fluid flux increase as it approaches the pump located at z = L.

4 Axial Pressure: Navier-Stokes

A relationship between wellbore pressure and flow velocity is obtained from the Navier-Stokes equations for
an incompressible viscous fluid,

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇P + µ∆~v. (4)

Again refer to Figure 2 where we consider an arbitrary yet constant cross-section. Assume a steady fluid
flow inside the wellbore that propagates in the k̂ direction. Assuming that the flow is radially symmetric,
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we have ~v = v(r)k̂ and the continuity equation is automatically satisfied. Resolving (4) into the r, θ and z
directions gives ∂P/∂r = 0 = ∂P/∂θ and

µ
1
r

∂

∂r

(
r
∂v

∂r

)
=

∂P

∂z
. (5)

The first two conditions on the pressure imply that P = P (z). As a consequence, the RHS of (5) is a function
of z alone while the LHS is a function of r alone. The only way that this can be so is if the pressure is
constant over the cross-section of the wellbore. This implies that for our annular domain Rz ≤ r < Rw and
z∗ < z < z∗ + ∆z we must solve

µ
1
r

∂

∂r

(
r
∂v

∂r

)
=

∆P

∆z
; v(Rz) = 0, v(Rw) = 0

where ∆P = P (z∗ + ∆z) − P (z∗) < 0. At the inner radius Rz we have imposed a no slip condition which is
replaced with v(0) < ∞ when Rz = 0. Because the casing is perforated to allow fluids to easily pass4, it is
not a solid boundary and as such the possibility of a small axial velocity vε at the inner casing wall Rw, is
conceded. However, we impose a no slip condition at the inner casing since the effect of this small velocity is
to simply add a constant flux to η. The general solution for the velocity distribution as a function of radius
is found to be

v(r) =
1
4µ

∆P

∆z

[
r2 − R2

w +
R2

w − R2
z

ln(Rz/Rw)
ln

(
r

Rw

)]
.

For regions in which there is no EMIT tool or tubing (Rz = 0), this reduces to the familiar parabolic flow
profile

v(r) =
1
4µ

∆P

∆z
(r2 − R2

w).

In order to find the average flux of oil at any fixed value of z one needs to compute the average of this
radial velocity. Computing this average results in

v =
2

(R2
w − R2

z)

∫ Rw

Rz

v(r) rdr = −R2
w

8µ

∆P

∆z

(
1 − λ2

ln λ
+

1 − λ4

1 − λ2

)

where λ = Rz/Rw and 0 ≤ λ < 1. If we now let ∆z → 0, rearrange terms and use the definition of η this
becomes

dP

dz
= − 8µ

πR4
w

[
ln λ

(1 − λ2)2 + (1 − λ4) ln λ

]
η(z); P (L) = PP (6)

where PP is the pressure maintained by the pump at z = L. If one allows λ → 0+ (Rz → 0+) then equation
(6) reduces to the popular Hagen-Poiseuille [1] equation

dP

dz
= − 8µ

πR4
w

η(z).

Differentiating expression (3) and using (6) we obtain a second order equation for the flux

d2η

dz2
− γ2(z)

µ

µo
η = 0; γ2(z) =

16k

R4
w ln(Rd/Rc)

[
ln λ

(1 − λ2)2 + (1 − λ4) ln λ

]
(7)

with boundary conditions

η(0) = 0,
dη

dz

∣∣∣
L

=
2πk(PR − PP )
µo ln(Rd/Rc)

. (8)

Notice that γ2 is both positive and piecewise constant.
4The casing actually has holes drilled into it for the transport of oil.
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Figure 3: The production rate at the pump as a function of the length of the wellbore.

5 An Illustrative Example

Before we consider what happens as the wellbore is heated it is instructive to consider the unheated case
with no EMIT regions. Since no heat is applied, the viscosity of the fluids in the wellbore will be the same
as those in the surrounding medium. In addition, Rz = 0 throughout the wellbore so that the equation for
η(z) reduces to

d2η

dz2
− γ2η = 0; η(0) = 0,

dη

dz

∣∣∣
L

=
2πk(PR − PP )
µo ln(Rd/Rc)

.

The explicit form of the solution is easily verified to be

η(z) =
πR4

w

8µo

PR − PP

Lcrit

sinh γz

cosh γL
; L2

crit =
R4

w

16k
ln

(
Rd

Rc

)
=

1
γ2

.

From expression (3) the corresponding pressure is

P (z) = PR − (PR − PP )
cosh γz

cosh γL
.

The total production rate at the pump is given by the revealing expression

η(L) =
πR4

w

8µo

PR − PP

Lcrit
tanh γL ∼




πR4
w

8µo

PR − PP

Lcrit

L

Lcrit
; L � Lcrit

πR4
w

8µo

PR − PP

Lcrit
; L � Lcrit

which is depicted in Figure 3 for the data given in Table 1 where Lcrit = 865 m and the maximum production
rate is 191.32 m3/day. What is immediately apparent is that, without heating, drilling a horizontal well
beyond the critical length will not yield any significant increase in production.

We have now reached the point where we can consider what happens as the wellbore is heated.

6 Including the Temperature

For the purposes of this discussion, we assume that the wellbore has a steady state temperature distribution
that is a function of r and z alone. As well, to simplify the expressions, we will take the far field temperature
to be zero. We also assume that thermal conduction in the z direction is negligible.
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The primary sources of heat are the EMIT regions and the casings around them and it is assumed that
the heat production is uniform. Since the reservoir and casings are porous, heat is convected radially in
them. In the wellbore, oil flows along the axis and therefore heat is axially convected.

We begin with a justification of ignoring thermal conduction along the wellbore axis. Consider the rate
of energy transfer due to convection with that due to conduction. Convection is the dominant process if

ρCf v̄ δT � λ
δT

L

where ρCf is the specific heat, λ is the thermal conductivity, v̄ is the speed of convecting fluid and δT is the
changes in temperature over the length L. This gives the condition that λ � ρCf v̄L ∼ 5.6 × 107 W/m/s
using the data from Table 1 and experimentally observed average speed of v̄ ' 0.2 m/s. Since typical fluids
in the wellbore have thermal conductivities of λ ' 10 [2], the transport of heat via conduction along the
wellbore axis can be safely ignored.

For any of the regions, the heat flux is given by an expression of the form [2]

~Φ = λ∇u − ρCf~vu

where u = u(r, z) is the temperature of a fluid moving with velocity ~v. As before, λ and ρCf are the thermal
conductivity and heat capacity of the fluid. In the reservoir and the casing, the fluids are assumed to be
flowing at a constant rate of vo at the drainage radius Rd towards the centre of the wellbore. As such
~v = −(voRd/r)r̂ in these regions. Inside the actual EMIT there is no fluid so that ~v = ~0 and in the wellbore
we take ~v = v̄(z)k̂ the average radial velocity used in Section 4.

To find the steady state heat equation in each of the regions one has ∇ · ~Φ + Q = 0 where Q is a heat
source term (if any) and assuming a steady state. The resulting equations are summarized below:

Reservoir:
1
r

∂

∂r

(
rλr

∂u

∂r
+ βu

)
= 0 (9)

Casing:
1
r

∂

∂r

(
rλc

∂u

∂r
+ βu

)
+ Qc = 0 (10)

Wellbore:
1
r

∂

∂r

(
rλw

∂u

∂r

)
− ρCf

∂

∂z
(v̄u) = 0 (11)

EMIT:
1
r

∂

∂r

(
rλe

∂u

∂r

)
+ Qe = 0 (12)

where β = ρCfRdvo.
We are not interested in resolving the details of the radial temperature distribution in the wellbore.

Rather, we only care about the axial variations of the mean temperature. This permits a simplification.
First define the mean temperature over the wellbore cross-section at z to be

T (z) =
2

(R2
w − R2

z)

∫ Rw

Rz

u(r, z) rdr

as we did with η in the derivation of equation (6). Recall that Rz is the inner radius and depends on z.
With this definition, the equation for the wellbore (11) can be integrated resulting in the expression

ρCf
d

dz
(ηT ) = 2πrλw

∂u

∂r

∣∣∣Rw

Rz

(13)

again using the fact that η = π(R2
w − R2

z). The thermal flux in the wellbore is given by

~Φw = λw
∂u

∂r
r̂ − ρCf v̄uk̂.

This must be continuous at the interfaces. Hence in the radial direction for the wellbore/casing and well-
bore/EMIT interfaces one has respectively

rλw
∂u

∂r

∣∣∣
Rw

=
(

rλc
∂u

∂r
+ βu

)∣∣∣
Rw

and rλw
∂u

∂r

∣∣∣
Rz

= rλe
∂u

∂r

∣∣∣
Rz

.
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By using the remaining three heat equations it remains for us to evaluate these fluxes on the right hand side.
For the EMIT region we find by solving (12) that

rλe
∂u

∂r

∣∣∣
Rz

= −1
2
QeR

2
z. (14)

Furthermore, by solving (9) one finds that the temperature has the general form

u(r, z) = k1 + k2r
−β/λr

in the reservoir where k1 and k2 are constants. Because the far field temperature is zero, one must have
limr→∞ u(r, z) = k1 = 0. As a result,

rλr
∂u

∂r
+ βu = βk1 = 0 (15)

and the thermal flux in the reservoir and, in particular, the thermal flux through the casing/reservoir interface
is zero. Using this as a boundary condition one can integrate the expression for the casing (10) to find that

(
rλc

∂u

∂r
+ βu

)∣∣∣
Rw

=
1
2
Qc(R2

c − R2
w). (16)

Collecting equations (13)-(16) gives the final expression

ρCf
d

dz
[η(z)T (z)] = π

[
Qc(z)(R2

c − R2
w) + Qe(z)R2

e

]
; T (0) = 0. (17)

The heat sources Qc and Qe have been written as functions of z so that the expression remains valid for the
whole length of the wellbore. If one is not in an EMIT region, these functions are simply zero. As a result,
the RHS of (17) piecewise constant; nonzero only where an EMIT is located.

7 The Model

In the axial direction the rate of change of η(z) = π(R2
w − R2

z)v̄(z) is governed by Darcy’s Law and in our
approximation it is assumed that the fluid is not heated until it reaches the wellbore. For the axial pressure
the Navier-Stokes equations are solved for an annular region by assuming that the fluid is incompressible.
When we apply heat to wellbore, it is this fluid in the wellbore that is heated and not the fluid in the
surrounding region. We can summarize the problem for η(z) as

d2η

dz2
− γ2(z)

µ(T )
µo

η = 0; γ2(z) =
16k

R4
w ln(Rd/Rc)

[
ln λ

(1 − λ2)2 + (1 − λ4) ln λ

]
(18)

which is simply (7) with a temperature dependent viscosity. Recall that λ = Rz/Rw and Rz is given by
expression (2). In the case of one EMIT region the temperature is

T (z) =




0; 0 ≤ z < ze − Le

Ω
η(z)

z − ze + Le

2Le
; |z − ze| ≤ Le

Ω
η(z)

; ze + Le < z ≤ L,

Ω =
π[Qc(R2

c − R2
w) + QeR

2
e](2Le)

ρCf
(19)

found by integrating (17). From the values in Table 1 we find that Ω ∼ 3.10 × 10−2 m3K/s. Notice that if
η(z) were constant then the temperature would increase monotonically as one moved from z = 0 to z = L.
However, since η(z) actually increases as one moves toward the pump, the temperature of the fluid must
decrease once it passes an EMIT region.
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Figure 4: Comparison of the pressure profiles with the commercial code. Two cases are shown: 1) with no
EMIT and 2) with an unpowered EMIT. The commercial code is indicated with a dashed line whereas our
solution has a solid line. The upper curves correspond to the second case. There is good agreement between
the two models.

The temperature affects the velocity and the pressure through the viscosity. This viscosity is given
empirically in units of thousands of centipoise through

log10 µ(T ) = −3.002 +
(

453.29
303.5 + T

)3.5644

, µo = µ(0). (20)

Hence, one can see that an increase of 100◦C can result in a decrease in viscosity of about three orders of
magnitude. One final point is that the far field temperature should correspond to the ambient viscosity
µ0. Since µ0 = 15000 cP we associate the far field temperature of zero with the ambient temperature of
Ta = 30◦C. This last expression for the viscosity and the boundary conditions (8), repeated here for clarity,
closes the system

η(0) = 0,
dη

dz

∣∣∣
L

=
2πk(PR − PP )
µo ln(Rd/Rc)

.

Once we have simultaneously solved for η(z) and T (z), the pressure as a function of z is determined by
expression (3) with the result that

P (z) = PR − µo

2πk
ln

(
Rd

Rc

)
dη

dz
. (21)

From this relationship one sees that an increase in the flux rate corresponds to a drop in pressure. Therefore,
the model should predict a significant pressure drop across an EMIT region where the fluid accelerates due
to the decrease in viscosity. Other functions of interest are the average velocity, v̄(z) = η(z)/(π(R2

w − R2
z)),

and the production rate at the pump, η(L).

8 Numerical Results

To determine how well the model compares with the results of the commercial code, we first consider the
case without an EMIT region and the case with an unpowered EMIT thereby decoupling the temperature
effects. Figure 4 illustrates the pressure profiles in the two cases. In the case with no EMIT the commercial
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Figure 5: The four figures are the pressure, temperature, velocity and viscosity as a function of distance
along the wellbore. Only the pressure and temperature for the CFD code was available. These are the
dashed lines in the respective plots. More than one method was used to solve the simplified model. Where
they are distinguishable, the shooting method solution is a solid line where the SOR method is indicated
with a dashed dot. A longitudinal section of the wellbore in indicated in the plot of the velocity.

code yields ηcc(L) = 153.09 m3/day while the simplified model has ηsm(L) = 156.03 m3/day a difference of
1.9%. With an unpowered EMIT, ηcc(L) = 68.89 m3/day and ηsm(L) = 71.97 m3/day a difference of 4.3%.
Clearly, good agreement between the two models is demonstrated.

As we have stated back in the introduction, the agreement between the qualitative results of the simplified
model and those predicted by the commercial code are quite remarkable. This is especially true in light of
their respective computational costs. Figure 5 illustrates the results for the data described in Table 1.

Only the pressure, temperature and final production rate are easily available from the CFD code. Because
of this, only the pressure and temperature curves in Figure 5 have a dashed line. To solve the nonlinear ODE
described in Section 7 two different method were employed; a shooting method and a method of successive
over relaxation (SOR). Whenever they are discernible, the solution from the shooting method is a solid line
while the SOR solution is a dashed dot line. We begin our discussion with the pressure curve.

Because of the boundary condition P (L) = PP , all of the pressure curves intersect at z = L. At z = 0
the CFD code predicts Pcc(0) = 4.07×103 kPa while the simplified model predicts Psm(0) = 3.44×103 kPa.
Despite the fact that our model tends to underestimate the results from the commercial code, the amount
of pressure drop across the EMIT region is predicted correctly. The last curve in this plot is solely for
comparison purposes. It is the pressure curve for the example described in Section 5 (no EMIT region).
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Figure 6: The production rate ηsm(z) as a function of distance along the wellbore for the simplified model.
Only the production at the pump ηcc(L) was available from the CFD code and is indicated with the diamond.
The dashed curve is the production rate for the case of no EMIT described in Section 5.

Comparing the temperature curves, there is a distinct difference in the shape of the two curves. The peak
temperature in the EMIT region is faithfully reproduced, but the rate at which the fluids lose heat is larger in
the CFD model. Consequently, the surface temperature of simplified model is larger, Tsm(L) = 37.4oC, than
that of the CFD model, Tcc(L) = 33.1oC. Curves for the viscosity and the velocity could not be compared
with the commercial model as these quantities were not directly accessible.

The discrepancies between the commercial model and the simplified model stem from expression (1) and
our assumption that the fluid is instantaneously heated when it reaches the wellbore. In actual fact the
temperature in the wellbore will increase the flow in the radial direction in a neighbourhood of EMIT. The
Rd/Rc ratio in equation (3) defines the radial boundaries of the unheated fluid. Consequently, a crude way
to include a thermal boundary is to allow the Rd/Rc in equation (3) to depend on the temperature. Solving
the heat equation in the annular region Rc ≤ r ≤ Rd at a fixed z suggests the replacement:

ln
(

Rd

Rc

)
−→ ln

(
Rd

rε

)
= min

{
T (rε)
T (z)

, 1
}

ln
(

Rd

Rc

)

where one fixes T (rε) to be some small positive value. Modifying the differential equation (18) and the
boundary condition (8) in this manner produces temperature and pressure profiles closer to those of the
CFD solution indicating that a careful derivation of the Darcy’s Law expression (1) would yield a more
robust model.

For the production rate refer to Figure 6. Our model and the commercial package predict similar rates
at the pump. Specifically, ηsm(L) = 115.2 m3/day and ηcc(L) = 106.5 m3/day respectively. Only the flux
rate at the pump was available from the CFD code. the dashed curve in this plot is the production rate with
no EMIT.

We now turn our attention away from validating the model and investigate the behaviour of the model
over various ranges of the parameters.

Figure 7 illustrates the production rate at the pump, η(L), as a function of the applied power and the
position of the EMIT. The contour on the surface is located at the height corresponding to production rate
of ηsm(L) = 156.03 m3/day, the rate with no EMIT in the wellbore. Since the presence of the EMIT blocks
the wellbore, it must be heated to a certain power level to compensate for this effect. With the current
geometry this break-even point is at about 2000 kW/m3 and it is attained when the EMIT is placed at the
very back of the wellbore. What is also apparent from the surface is that increasing the power level by a
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Figure 7: The production rate at the pump ηsm(L) as a function of the location of the centre of the EMIT,
ze, and the applied power. Rather than using the total power, we simply report the value of Qc, the power
in the casing. We have taken Qe = Qc/10. The contour on the surface is located at η(L) = 156.03 m3/day
corresponding to the flux if there was no EMIT.

small amount to about 2400 kW/m3, allows one to obtain this break-even point at nearly the midpoint of
the wellbore. One final point is that η(L) is a stronger function of the power applied to the EMIT than the
position in the wellbore. One cannot increase the applied power without bound since there is a maximum
temperature beyond which the fluids begin to vaporize and the model breaks down [5].

The last simulation deals with the situation where a number of EMIT regions are placed in the wellbore
and the placement of the EMIT regions is determined so that the viscosity never exceeds some prescribed
value. In the case considered, one of the EMITs was fixed at z = 100 m and powered with Qc = 795.8,
Qe = Qc/10 and the additional EMITs were given the same power level and placed in the wellbore as they
were required. Figure 8 tracks the position of the EMIT regions as the maxiumum allowable viscosity was
varied. For example, if µmax = 2000cP then four EMIT regions are required and they should be centered at
z = 100, 315, 598 and 845 m. The EMIT at z = 100 was fixed. In this case the production rate was 156.8
m3/day. While some nonlinear behaviour is apparent, spacing the EMIT regions at equally spaced intervals
closely approximates the optimal placing.

9 Conclusions

We present a mathematical model for the flow of fluids in a horizontal well in which the well has one or
more regions that are electrically heated from an external source. By making some basic assumptions and
averaging the flow over the cross-section of the wellbore, we develop a nonlinear second order ordinary
differential equation for the volume flux η(z) as a function of distance along the wellbore. From the volume
flux, both the average radial temperature and the pressure can be extracted. Comparing the predictions with
those from an expensive computational fluid dynamics (CFD) program we find that the simplified model
captures many of the features observed in the solution to the full PDE system. A simple modification of the
model to account for a thermal boundary layer reduces the differences between the two models.

Despite these criticisms, the predicted production rates correspond with those of a full CFD solver seem
to validate the model. The large reduction in computational cost when using the simplified model allows
one to quickly run a series of numerical experiments to see the effects of changing various parameters. Two
such experiments are considered. First, the production rate at the pump as a function of both the applied
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Figure 8: Position of the EMIT regions as a function of the maximum allowable viscosity, µmax. Each
value of µmax considered has a corresponding production rate η(L) These values are illustrated above their
respective values of µmax.

power and the position of the EMIT and second, the optimal positioning of the EMIT regions as a function
of the maximum allowable viscosity.
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